
 197  

Ada User Journal Volume 39, Number 3, September 2018 

The IRONSIDES Project: Final Report 
Barry S. Fagin and Martin C. Carlisle 
Dept of Computer Science, US Air Force Academy 80840 Tel: 1-719-333-3338; email: barry.fagin@usafa.edu. 

 

Abstract 

In a project intended to improve the security of 
internet software, the authors developed IRONSIDES: 
A DNS server written in Ada/SPARK. Our long-term 
goals were a) to show that a fully functional 
component of the internet software suite could be 
written with provably better security properties than 
existing alternatives, b) to show that it could be done 
within the relatively modest re-sources available for a 
research project at an undergraduate university, c) to 
determine the suitability of Ada/SPARK for such a 
project, and d) to compare the performance of the 
resulting software to existing alternatives and 
determine to what extent, if any, the addition of 
provable security properties affects performance. We 
report our conclusions from this multi-year project. 

Keywords: Ada, DNS, formal methods, internet 
software, performance analysis, SPARK. 

1   Introduction 

The Domain Name System (DNS) is the internet protocol 
that transforms hostnames (e.g. cnn.com) into IP addresses 
(e.g. 151.101.0.73). Originally proposed by Mockapetris in 
[1], it is a distributed database protocol that uses the 
internet as a tree structure to manage records containing 
information about machine names and properties.  

Software that implements this protocol is referred to as a 
DNS server. This term can also describe the machine that 
runs a DNS server. Servers responsible for resolving names 
in a single zone (typically a company, university, or 
similarly scoped institution) are called authoritative servers. 
If queried about names outside the zone for which they are 
responsible, authoritative servers reply with a failure 
message, the equivalent of “I don’t know”. 

Servers capable of resolving names for any publicly visible 
machine on the internet are called recursive. They use a 
recursive process to travel up the distributed internet tree 
structure to determine the name of the machine in question. 
In modern DNS practice, most recursive solvers do not use 
full recursion to traverse the name tree. Instead, they refer 
queries to a publicly available fully recursive DNS server 
(for example, Google’s public DNS at 8.8.8.8), and then 
cache the result for future use.  

DNS is a vital internet protocol. Unfortunately, because it 
dates from the early days of networking, it contains security 
flaws that require mitigation to prevent malicious actors 
from exploiting the system [2]. Additionally, most DNS 
software is written in older languages with inherent security 
problems. These languages do not lend themselves to 

rigorous software design and provable security properties. 
The two most popular DNS servers, BIND and WINDNS, 
have a large number of known security flaws, including 
crashing in response to the injection of bad data and bugs 
that permit remote execution [3], [4]. These are described 
in more detail in the sections that follow. 

2   The IRONSIDES Project 

The authors believed many of the security problems with 
DNS servers, web servers, and other internet software 
could be avoided with the use of better programming tools, 
such as the use of different programming languages and 
formal methods. They chose Ada and SPARK as an 
appropriate development environment to implement a 
provably secure DNS server from the ground up. 

The SPARK language and toolset from Altran UK is used 
in the creation of software systems with provable 
correctness and security properties [5]. SPARK is a subset 
of Ada, augmented with special annotations. These 
annotations appear as ordinary comments to Ada compilers, 
but are visible to SPARK’s pre-processing tools used to 
validate software. SPARK is a mature technology and has 
been used on several projects, including an open-source OS 
kernel provably free from runtime errors [6], the British Air 
Traffic Control System [7], and multi-level security 
workstations [8]. Accordingly, given our prior institutional 
experience with Ada [9], we chose SPARK and Ada as the 
platform for constructing DNS software that would not be 
subject to most of the vulnerabilities that afflict DNS 
implementations currently deployed around the world. 

The SPARK toolset generates verification conditions 
(VC’s) that it then attempts to verify. VCs include 
assertions that variables always remain in type, array 
bounds are never exceeded (a common source for buffer 
overflow vulnerabilities), pre- and post- conditions are 
always met, and so forth. When a VC has been proved by 
SPARK, it is said to be discharged.  

2.1   Milestone 1: An authoritative server on 
Ubuntu 
The first IRONSIDES milestone was achieved with the 
successful construction of an authoritative server, tested 
against BIND on Ubuntu [10]. The original test bed and 
performance results are shown in Figure 1 and Figure 2, 
respectively. 

We were pleasantly pleased to discover that the 
authoritative IRONSIDES DNS server performed 
significantly better than BIND under Linux.  



198  The IRONSIDES Project :  Final  Report 

Volume 39, Number 3, September 2018 Ada User Journal 

 

Figure 2 IRONSIDES original test bed for authoritative 
servers 

 

Figure 3 BIND and IRONSIDES performance under Linux 

2.2   Milestone 2: An authoritative server on 
Windows 
The next milestone was porting IRONSIDES to Windows, 
and testing it against both WinDNS and BIND [11]. The 
test bed was similar, except the virtual machine used ran 
Windows Server 2008. Performance results are shown 
below: 

 

Figure 4  Performance comparison on Windows 

We fully expected IRONSIDES to perform better than 
BIND, but were surprised to find it outperformed Windows 
DNS on its own native OS by 7%. 

At this point, the proof requirements of IRONSIDES 
looked like this: 

Table 1  Proof requirements of IRONSIDES authoritative 

Total          Examiner 
Simplifier   Victor 

Assert/Post          3106   2209          884      13 
Precondition          561         0          532      29 
Check stmt.             12         0           12        0 
Runtime check    3750          0       3704      46 
Refinement. VC s    44       42             2         0   
Inherit. VCs               0         0             0         0 

============================= 
     Totals:                      7473   2251        5134         88 
%Totals:                                   30%           69%        % 
 
Victor invokes an optional theorem-prover to discharge 
VC’s that the first two stages of the tools (the Examiner 
and the Simplifier) cannot. 

2.3   Milestone 3: A recursive server and detailed 
performance comparisons 
Recursive servers are more complex than authoritative 
ones, requiring more sophisticated data structures, cache 
management, and tasking. Building on our experience with 
the authoritative version, we next added recursive query 
functionality to IRONSIDES. The resulting basic structure 
(little changed to the present day) is shown in Figure 4. 

 

 

Figure 5. IRONSIDES recursive service structure 

This structure was implemented with the modules and data 
dependency relationships shown in Figure 5.  

Lines indicate a data dependency, transitive dependencies 
are implied. Their functions are: 

 spark_dns_main: Top-level executable. 

 udp_query_task: Concurrently executing task 
responsible for all incoming DNS traffic. 

35,3

107,2

0

100

200

DNS server performance
(queries/ms)

BIND IRONSIDES

0

20

40

DNS server performance
(queries/ms)

BIND IRONSIDES Win DNS



B. S. Fagin,  M. C. Car l is le 199  

Ada User Journal Volume 39, Number 3, September 2018 

 

Figure 5. IRONSIDES recursive service structure 
implementation 

 udp_response_task: Concurrently executing task 
responsible for managing all responses from upstream 
servers. 

 process_dns_request: Interprets incoming packet, 
queries DNS table, queues query if answer not found. 

 wire_to_records: Builds DNS resource records from 
DNS packets on the wire. 

 dns_network_rcv: SPARK wrapper for network traffic 
to guarantee no overflows. 

 global_buffers: Query and response queues. 

 protected_buffer: ADT for the query and response 
queues. 

 buffer_pkg: ADT for a queue. 

 dns_table: Cache of DNS resource records. 

 rr_type: Top-level package for all DNS resource record 
types. 

 dns_network: Handles low-level network IO. 

 dns_types: Data types for working with DNS packets. 

The proof requirements for the recursive version were: 

    
  Total    Exam.   Simp.   Victor 
Assert/Post       3510 2248 1194 68 
Precondition         641 0         609 32 
Runtime check     9705 0       9502 203 
Refinem. VCs      98 98 0           0 
Totals:                 13954 2346 11305 303 
%Totals:                        17%      81%       2% 
 
 

For static code size, we measured the following: 

Total Lines  14448 
Blank Lines                   1268 
Comments  4142 
SPARK Lines:  1713 
Ada lines     9038 
Ada statements                   6917 
SPARK statements  806 
 
Once we had produced a validated recursive server, we 
were ready to do a detailed performance comparison with a 
variety of both open-source and proprietary DNS servers 
[12]. As shown in Figure 6, 2e expanded the test bed to 
include a virtual machine running each server/OS 
combination, a VM running the Resperf performance 
analyzer [13], and a VM running the network simulator 
INETSIM [14]. 

 

 

 

 

 

Figure 6 Recursive server test bed 

When we ran the server in authoritative mode under 
Ubuntu, IRONSIDES continued to outperform BIND and 
others, although the gap had narrowed from about 3x to 
about 2x, as shown in Figure 7. 

Figure 8 shows how under Windows, however, WinDNS 
now performed slightly better, perhaps due to 
improvements in later releases or the increased complexity 
of IRONSIDES required to support recursive queries. 

The number of queries handled as a function of increasing 
requests per second for recursive servers is shown in the 
two charts included in Figure 9. 

 

 

spark_dns_main

udp_query_task

process_dns_request udp_response_task

wire_to_records

dns_table

rr_type

dns_network_rcv global_buffers

protected_buffer

buffer

dns_network

dns_types



200  The IRONSIDES Project:  F inal  Report  

Volume 39, Number 3, September 2018 Ada User Journal 

 

Figure 7  Performance comparison of authoritative DNS 
servers under Unix 

 

Figure 8 Performance comparison of authoritative servers 
under Windows 

 

 

Figure 9  Performance of recursive servers 

Up to 1500 queries per second, the performance of all the 
servers is essentially indistinguishable. At higher values, 

IRONSIDES, DNSMASQ and DJBDNS dropped off fairly 
rapidly. Surprisingly, under Windows, BIND also did the 
best. 

On the other hand, in terms of queries lost, WinDNS and 
IRONSIDES performed best, as shown in Figure 10. 

 

 

Figure 10 Queries lost by DNS servers 

IRONSIDES had the second lowest latency for Unix DNS 
servers, but the longest latency for Windows servers. We 
believe this is due to latency being extremely important to 
Microsoft, and to IRONSIDES policy of trying to handle 
every query it can (BIND, by contrast, drops queries if it is 
too busy): 

 

 

 

Figure 11  Latency of DNS servers 



B. S. Fagin,  M. C. Carl is le 201  

Ada User Journal Volume 39, Number 3, September 2018 

 
For further details, the reader is referred to the references. 

3   Insights from experience 

The results from the authoritative server design process 
gave our first hints that performance did not need to be 
sacrificed to improve security. In fact, there were clear 
examples in which the use of formal methods actually 
improved performance. For example, data flow analysis 
identified redundant or ineffective statements that in turn 
permit the removal of inefficient code. Code that has been 
proven exception-free no longer requires runtime bounds 
checking, so that can be eliminated as well. 

We also learned, however, that there were cases were total 
reliance on formal methods and proof negatively impacted 
performance. Because SPARK requires all data structures 
to be statically allocated, data structures must be sized at 
the upper limits of expected use. Explicit initialization of 
such structures, while required for validation, is inefficient 
and wasteful. In those rare cases, we explicitly told the 
tools to relax that requirement. This improved IRONSIDES 
performance by almost 30%. Thus we believe allowing 
users to override formal proof requirements when 
appropriate is an important feature that formal methods 
tools should always support. 

It is crucial to always remember the role of the compiler. 
Despite our confidence in the tools to help us produce 
crash-proof software, we found one combination of 
operating system, compiler and optimization level where a 
fully validated version of IRONSIDES crashed with an 
exception. This was due to a code generation error in the 
version of GNAT shipped with Ubuntu, long since 
corrected. Still, until formal methods have progressed 
sufficiently to the point where they can prove the 
correctness of compilers for a given target architecture and 
OS, programmers should continue to exercise healthy 
skepticism when compiling and testing verified software. 

Our experience with the tools produced results we would 
describe as both impressive and humbling. Despite both of 
us having computer science PhD’s, over 50 years of 
combined industry and academic experience, and an 
extensive knowledge of programming languages and 
software engineering practice, the tools still caught 
boundary conditions and potential problems that in 
principle we could have found but did not. This is the 
whole point of using formal systems, but the experience is 
nonetheless humbling. Perhaps it will become less so as 
formal methods and proof tools become a standard part of 
the software engineering process. 

IRONSIDES has numerous provable security properties 
absent from all the other servers tested, including BIND 
and WinDNS. These include: 

1) No classic buffer overflow 
2) No incorrect calculation of buffer size 
3) No improper initialization 
4) No ineffective statements 
5) No integer overflow/wraparound 

6) No information leakage 
7) All input validated 
8) No allocation w/o limits (no resource exhaustion) 
9) No improper array indexing 
10) No null pointer dereferencing 
11) No expired pointer dereferencing (use after free) 
12) No type confusion 
13) No race conditions 
14) No incorrect conversions 
15) No uncontrolled format strings 
16) All loops guaranteed to terminate 

With all these advantages, we were pleased to discover that 
IRONSIDES also performs comparably to servers with 
security problems, including the industry standards of 
BIND and WinDNS. IRONSIDES offers comparable 
performance at nominal loads, trailing off only under 
maximal loading. This is particularly significant 
considering each server’s respective development costs. 
BIND is produced with an industrial consortium. WinDNS 
is bundled with the flagship product of a multibillion dollar 
software company. IRONSIDES was written by the 
equivalent of a little more than one professor at an 
undergraduate university with near full-time teaching 
duties.  

4   Conclusions and future work 

The success of IRONSIDES indicates that formal methods 
can be used both improve the security properties of 
software without incurring significant performance 
penalties, and in some cases can actually improve 
performance. This was done in an environment with 
significantly fewer resources available than comparable 
products. 

Why then are similar approaches not more widely adopted? 
Existing products have greater sunk costs. In all fairness to 
them, they also offer more functionality and a better 
support base, options that are not available to the time and 
resource constrained environments present in the academic 
development of prototype software. Programming with 
formal methods also requires the use of a relatively 
unfamiliar language (particularly in the United States) as 
well as comfort with mathematical logic and proof. Most 
software engineers are not yet trained to work this way. 
Perhaps, however, over time this will change as the 
advantages of formal methods and proof are shown to 
produce more reliable software that keeps a company’s 
name out of the newspapers. 

Since the latest stable release of IRONSIDES, Ada has 
added more features that meld it more tightly with SPARK. 
We hope to upgrade IRONSIDES in the future to support 
these features and to examine their effects. 

We hope this work will be further extended to apply formal 
methods and performance analysis outside the DNS 
domain, in the hopes of continued confirmation that 
internet software can be made provably more secure 
without significant sacrifices in performance. Web servers, 
for example, suffer from similar security problems for 
similar reasons. ICS and SCADA systems are currently 



202  The IRONSIDES Project :  Final  Report 

Volume 39, Number 3, September 2018 Ada User Journal 

attractive targets for hacking, and formal methods have 
been used to improve their security [30], but the effect of 
formal methods on performance in this domain remains 
unknown. These are the subject of current work at the 
Academy Center for Cyberspace Research. 

Acknowledgments 

This work was supported in part by the US Air Force 
Office of Scientific Research under grant #1220961, the US 
Department of Defense Advanced Research Projects 
Agency, and the Academy Center for Cyberspace 
Research. 

References 
[1] https://tools.ietf.org/html/rfc882.  

[2] Carnegie Mellon University Software Engineering 
Institute (2008), Multiple DNS implementations 
vulnerable to cache poisoning, available online at 
http://www.kb.cert.org/vuls/id/800113.  

[3] Internet Security Consortium, BIND 9 Security 
Vulnerability Matrix, available online at 
https://kb.isc.org/article/AA-00913/0/ 
BIND-9-Security-Vulnerability-Matrix.html  

[4] https://technet.microsoft.com/library/security/MS15-
127  

[5] J. Barnes (2003), High Integrity Software: The SPARK 
Approach to Safety and Security, Addison-Wesley 
Publishing, 0-321-13616-0, ©. 

[6] R. Buerki and A. Rueegsegger (2013), Muen - an 
x86/64 separation kernel for high assurance, Technical 
Report, University of Applied Sciences Rapperswil 
(HSR), Switzerland. Available on line at 
http://people.cs.ksu.edu/~danielwang/Investigation/For
mal_Verification/muen-report.pdf. 

[7] AdaCore (2017), GNAT Pro chosen for UK’s next 
generation ATC system, AdaCore Technologies press 

release, available online at http://www.adacore.com/ 
customers/uks-next-generation-atc-system/. 

[8] AdaCore (2010), Spark PRO adopted by secunet, 
AdaCore Technologies press release, available online 
at http://www.adacore.com/customers/multi-level-
security-workstation/ 

[9] R. Sward, M. Carlisle, B. Fagin and D. Gibson (2003), 
The case for Ada at the USAF Academy, Proceedings 
of the ACM SIGAda International Conference on Ada 
pp 68-70. 

[10] M. Carlisle and B. Fagin (2012), IRONSIDES: DNS 
with no single-packet denial of service or remote code 
execution vulnerabilities, GLOBECOMM 2012, 
Anaheim CA. 

[11] B. Fagin and M. Carlisle (2013), Provably secure 
DNS: A case study in reliable software, 2013 
International Conference on Reliable Software 
Technologies, Berlin, Germany pp 81-93. 

[12] B. Fagin, M. Carlisle and B. Klanderman (2017), 
Making DNS Servers Resistant to Cyber Attacks, 
COMPSAC 2017, Turin, Italy pp 566-571. 

[13] http://www.nominum.com/measurement-tools/ 

[14] Internet Services Simulation Suite, 
http://www.inetsim.org/ 

[15] J. Groote, A. Osaiweran and J. Wsesselius (2011), 
Analyzing the effects of formal methods on the 
development of industrial control software, 2011 IEEE 
Conference on Software Maintenance, Williamsburg 
VA, pp 467-472. 

[16] H. Boulakhrif (2015), Analysis of DNS resolver 
performance measurements, Masters’ Thesis, 
University of Amsterdam, available at 
https://www.nlnetlabs.nl/downloads/publications/ 
os3-2015-rp2-hamza-boulakhrif.pdf. 

  



Copyright of Ada User Journal is the property of Ada-Europe ivzw/aisbl and its content may
not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.


